Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling

نویسندگان

  • Junyoung Chung
  • Çaglar Gülçehre
  • Kyunghyun Cho
  • Yoshua Bengio
چکیده

In this paper we compare different types of recurrent units in recurrent neural networks (RNNs). Especially, we focus on more sophisticated units that implement a gating mechanism, such as a long short-term memory (LSTM) unit and a recently proposed gated recurrent unit (GRU). We evaluate these recurrent units on the tasks of polyphonic music modeling and speech signal modeling. Our experiments revealed that these advanced recurrent units are indeed better than more traditional recurrent units such as tanh units. Also, we found GRU to be comparable to LSTM.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequence Modeling using Gated Recurrent Neural Networks

In this paper, we have used Recurrent Neural Networks to capture and model human motion data and generate motions by prediction of the next immediate data point at each time-step. Our RNN is armed with recently proposed Gated Recurrent Units which has shown promissing results in some sequence modeling problems such as Machine Translation and Speech Synthesis. We demonstrate that this model is a...

متن کامل

Gated Feedback Recurrent Neural Networks

In this work, we propose a novel recurrent neural network (RNN) architecture. The proposed RNN, gated-feedback RNN (GF-RNN), extends the existing approach of stacking multiple recurrent layers by allowing and controlling signals flowing from upper recurrent layers to lower layers using a global gating unit for each pair of layers. The recurrent signals exchanged between layers are gated adaptiv...

متن کامل

An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling

For most deep learning practitioners, sequence modeling is synonymous with recurrent networks. Yet recent results indicate that convolutional architectures can outperform recurrent networks on tasks such as audio synthesis and machine translation. Given a new sequence modeling task or dataset, which architecture should one use? We conduct a systematic evaluation of generic convolutional and rec...

متن کامل

Acoustic Modeling Using Bidirectional Gated Recurrent Convolutional Units

Convolutional and bidirectional recurrent neural networks have achieved considerable performance gains as acoustic models in automatic speech recognition in recent years. Latest architectures unify long short-term memory, gated recurrent unit and convolutional neural networks by stacking these different neural network types on each other, and providing short and long-term features to different ...

متن کامل

MuFuRU: The Multi-Function Recurrent Unit

Recurrent neural networks such as the GRU and LSTM found wide adoption in natural language processing and achieve state-ofthe-art results for many tasks. These models are characterized by a memory state that can be written to and read from by applying gated composition operations to the current input and the previous state. However, they only cover a small subset of potentially useful compositi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1412.3555  شماره 

صفحات  -

تاریخ انتشار 2014